Advanced signal processing for weather radars

Towards clean radar data for daily operations and science

Radar reflectivity Radar reflectivity (unfiltered)

> AZh Attenuation corrected horizontal reflectivity

ZDR **Differential reflectivity**

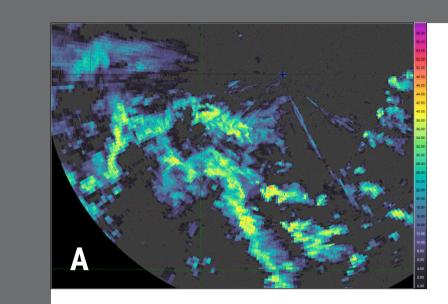
UZDR Differential reflectivity (unfiltered)

> AZDR Attenuation corrected differential reflectivity

ZDR1 Differential reflectivity

UZDR1 Differential reflectivity calculated from LAG1 (unfiltered

LIST OF ALL AVAILABLE MOMENTS* AZDR1 Attenuation corrected differential reflectivity from LAG1

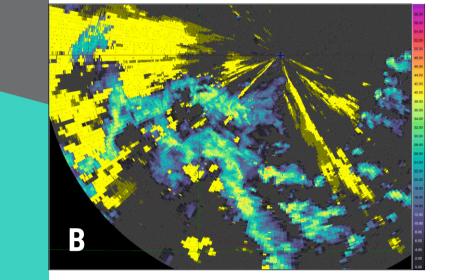

Radial velocity

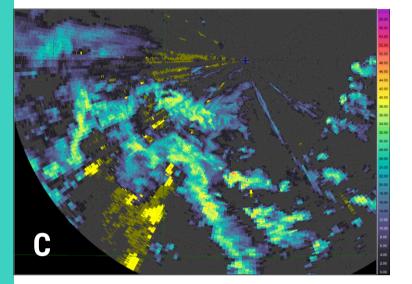
UnV Radial velocity (unfiltered)

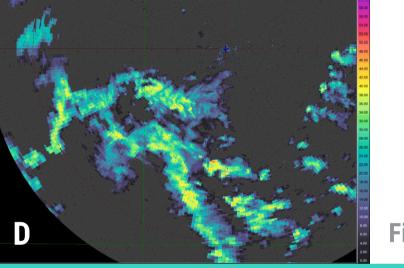
Folded radial velocity

UVF

MULTI-TRIP ECHOES


Weather radar data should ideally only contain weather, but it is **affected by many unwanted** influences, among others:


Noise


- Stationary clutter
- Multi-trip echoes -)•
- Radio frequency interference (RF)
- Wind turbine clutter (WTC)

Some can be mitigated with simple algorithms (e.g. fixed clutter), others need **more** sophisticated approaches (multi-trip echoes, RF, WTC).

GAMIC signal processor ENIGMA has built-in all signal processing features, moments, and data types presented here.



Echoes coming from **behind the maximum unambiguous range** are ambiguous and called multi-trip echoes.

Multi-trip echoes can be detected by a **coherent radar** (coherent on recieve or fully coherent).

- Requirement: the **transmitted phase is coded and varies** from pulse to pulse (magnetron: inherent random phase of transmitted pulse; solid state: random phase or SZ64 coding).
- Due to knowledge about the phase for each transmitted pulse, any received pulse can be **associated** with previous transmissions (multi-trips).
- Detected multi-trip echoes can be **flagged** and **classified**.
- Multi-trip echoes can be **filtered** by removing the respective coherent values from the time series data.

Fig. 1: Reflectivity data with multi-trip echoes (a), second-trip flagged (b), third-trip flagged (c), and corrected (d).

RADIO FREQUENCY INTERFERENCE

Radio frequency (RF) interference signals (wifi, other radars, etc.) occur especially in **densly populated areas**. These signals contaminate weather radar data but can be detected in real time.

Folded radial velocity (unfiltered)

Spectral width

UW Spectral width (unfiltered)

CW Spectral width (corrected for antenna motion)

> PHIDP **Differential phase**

PHIH **Differential phase** for H-transmit only (LDR mode)

UPHIDP Differential phase (unfiltered)

UPHIH Differential phase for H-transmit only (LDR mode) (unfiltered)

> **KDP** Specific differential phase

RHOHV Cross correlation coefficient

RHOH Cross correlation coefficient for H-transmit only (LDR mode)

URHOHV Cross correlation coefficient (unfiltered)

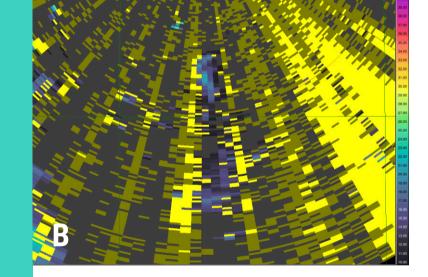
URHOH Cross correlation coefficient for H-transmit only (LDR mode) (unfiltered)

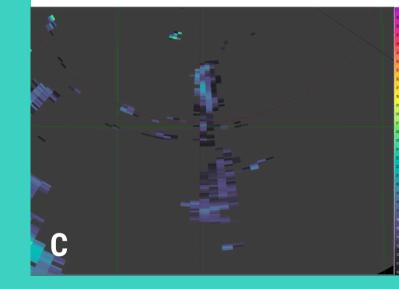
LDR Linear depolarization ratio

ULDR Linear depolarization ratio (unfiltered)

BASIC SIGNAL PROCESSING

Noise thresholding:

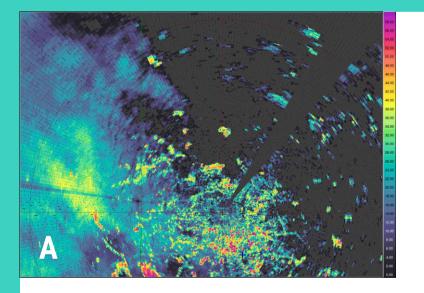

Cutting off data below the noise threshold.

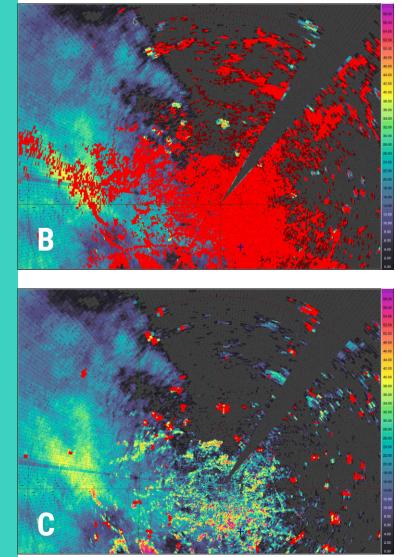

Speckle filter:

Removal of stand-alone data bins without neighbours and filling up small data gaps by interpolation of surrounding bins.

(Stationary) Clutter filter:

Pulse spectra are filtered for zero-velocity peaks (indicator for stationary clutter).


- Pulsed interference is uncorrelated with the pulse repetition frequency of the radar system
- A distinct RF interference signature is detected in the **time** series data in real time
- Bins contaminated by RF interference are **flagged** (can be used for filtering).


Fig. 2: Reflectivity data with RF interference (a), RF interference flagged (b), and corrected (c).

ADVANCED SIGNAL PROCESSSING

DATA TYPES

Scientific measurements can require a high dynamic data range. Digitized radar data can be stored as different data types:

WIND TURBINE CLUTTER (WTC)

Active wind turbines cause **more complex clutter** than stationary targets. The rotating blades cause an **elevated noise floor** in the Doppler spectrum due to their tangential velocity.

- Wind turbines visible as point targets in the estimated noise **NCP** (non-coherent power).
- Strong fixed targets (e.g. power lines, towers) also cause

SQ Signal quality index

SQI2 Signal quality index of second trip

SQI3 Signal quality index of third trip

CPA Clutter phase alignment

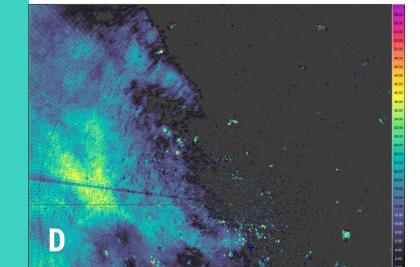
STD Normalized standard deviation

CCOR **Clutter correction ratio**

Inphase signal

Quadrature signal LOG

> Log power SIGPOW Signal power


SNR Signal to noise ratio

NCP Non-coherent power (realtime estimation of noise power)

> CR **Clutter ratio** (ratio clutter-to-signal)

Depolarization ratio (only for radars with phase shifter)

- **8 bit integer** (typical for basic data with no need for high value resolution)
- **16bit integer** (useful for moments with need for very high value resolution, e.g. PHIDP)
- **32bit float** (highest dynamic range, needed for the investigation of raw data, e.g. DFT)

Authors:

peaks in NCP (due to phase noise)

- Differentiation with **CR** (clutter ratio) moment (small for WTC, large for strong fixed targets)
- Identifying and flagging bins as wind turbine clutter at **local** peaks and their flanks
- Optional: Stabilising detections with a **confidence map**, thresholding of detections

Fig. 3: Reflectivity data with clutter and WTC (a), clutter flagged (b), WTC flagged (c), and corrected (d).

Depolarization ratio (only for radars with phase shifter) (unfiltered)

> DFT **Doppler spectrum**

UDR

CSRE Cross spectrum (real part)

CSIM Cross spectrum (imaginary part)

> **CSMAG** Cross spectrum (magnitude)

> > **CMAP** Censor map (flags for thresholding)

CLASS Classification flags (CLUTTER, INTERFERENCE, WTC, SECOND_TRIP, THIRD_TRIP)

* Applies for GAMIC signal processor ENIGMA. For dual polarization radars, many moments (e.g. Z, V, W) are available for the horizontal (h) and vertical (v) channel.

WEATHER RADAR & SIGNAL PROCESSING

GAMIC GmbH Weather Radar & Signal Processing Roermonder Str. 151 52072 Aachen, Germany

Matthias Toussaint, Johannes Vieten info@gamic.com www.gamic.com

